macro_rules! impl_top_level_sh {
// disallow `sortedmulti` in `bare()`
( Bare, Bare, sortedmulti $( $inner:tt )* ) => {
- compile_error!("`bare()` descriptors can't contain any `sortedmulti` operands");
+ compile_error!("`bare()` descriptors can't contain any `sortedmulti()` operands");
};
( Bare, Bare, sortedmulti_vec $( $inner:tt )* ) => {
- compile_error!("`bare()` descriptors can't contain any `sortedmulti_vec` operands");
+ compile_error!("`bare()` descriptors can't contain any `sortedmulti_vec()` operands");
};
( $descriptor_variant:ident, $sortedmulti_variant:ident, sortedmulti $( $inner:tt )* ) => {
}};
}
-#[doc(hidden)]
-#[macro_export]
-macro_rules! impl_modifier {
- ( $terminal_variant:ident, $( $inner:tt )* ) => {
- $crate::fragment!($( $inner )*)
- .map_err(|e| -> $crate::Error { e.into() })
- .and_then(|(minisc, keymap, networks)| Ok(($crate::miniscript::Miniscript::from_ast($crate::miniscript::miniscript::decode::Terminal::$terminal_variant(std::sync::Arc::new(minisc)))?, keymap, networks)))
- };
-}
-
#[doc(hidden)]
#[macro_export]
macro_rules! impl_leaf_opcode {
#[doc(hidden)]
#[macro_export]
macro_rules! impl_node_opcode_two {
- ( $terminal_variant:ident, ( $( $a:tt )* ), ( $( $b:tt )* ) ) => {
- $crate::fragment!($( $a )*)
- .and_then(|a| Ok((a, $crate::fragment!($( $b )*)?)))
+ ( $terminal_variant:ident, $( $inner:tt )* ) => ({
+ let inner = $crate::fragment_internal!( @t $( $inner )* );
+ let (a, b) = $crate::descriptor::dsl::TupleTwo::from(inner).flattened();
+
+ a
+ .and_then(|a| Ok((a, b?)))
.and_then(|((a_minisc, mut a_keymap, a_networks), (b_minisc, b_keymap, b_networks))| {
// join key_maps
a_keymap.extend(b_keymap.into_iter());
std::sync::Arc::new(b_minisc),
))?, a_keymap, $crate::keys::merge_networks(&a_networks, &b_networks)))
})
- };
+ });
}
#[doc(hidden)]
#[macro_export]
macro_rules! impl_node_opcode_three {
- ( $terminal_variant:ident, ( $( $a:tt )* ), ( $( $b:tt )* ), ( $( $c:tt )* ) ) => {
- $crate::fragment!($( $a )*)
- .and_then(|a| Ok((a, $crate::fragment!($( $b )*)?, $crate::fragment!($( $c )*)?)))
+ ( $terminal_variant:ident, $( $inner:tt )* ) => {
+ let inner = $crate::fragment_internal!( @t $( $inner )* );
+ let (a, b, c) = $crate::descriptor::dsl::TupleThree::from(inner).flattened();
+
+ a
+ .and_then(|a| Ok((a, b?, c?)))
.and_then(|((a_minisc, mut a_keymap, a_networks), (b_minisc, b_keymap, b_networks), (c_minisc, c_keymap, c_networks))| {
// join key_maps
a_keymap.extend(b_keymap.into_iter());
#[doc(hidden)]
#[macro_export]
macro_rules! impl_sortedmulti {
- ( sortedmulti_vec $thresh:expr, $keys:expr ) => ({
+ ( sortedmulti_vec ( $thresh:expr, $keys:expr ) ) => ({
let secp = $crate::bitcoin::secp256k1::Secp256k1::new();
$crate::keys::make_sortedmulti_inner($thresh, $keys, &secp)
});
- ( sortedmulti $thresh:expr $(, $key:expr )+ ) => ({
+ ( sortedmulti ( $thresh:expr $(, $key:expr )+ ) ) => ({
use $crate::keys::ToDescriptorKey;
let secp = $crate::bitcoin::secp256k1::Secp256k1::new();
}
+#[doc(hidden)]
+#[macro_export]
+macro_rules! apply_modifier {
+ ( $terminal_variant:ident, $inner:expr ) => {{
+ $inner
+ .map_err(|e| -> $crate::Error { e.into() })
+ .and_then(|(minisc, keymap, networks)| {
+ Ok((
+ $crate::miniscript::Miniscript::from_ast(
+ $crate::miniscript::miniscript::decode::Terminal::$terminal_variant(
+ std::sync::Arc::new(minisc),
+ ),
+ )?,
+ keymap,
+ networks,
+ ))
+ })
+ }};
+
+ ( a: $inner:expr ) => {{
+ $crate::apply_modifier!(Alt, $inner)
+ }};
+ ( s: $inner:expr ) => {{
+ $crate::apply_modifier!(Swap, $inner)
+ }};
+ ( c: $inner:expr ) => {{
+ $crate::apply_modifier!(Check, $inner)
+ }};
+ ( d: $inner:expr ) => {{
+ $crate::apply_modifier!(DupIf, $inner)
+ }};
+ ( v: $inner:expr ) => {{
+ $crate::apply_modifier!(Verify, $inner)
+ }};
+ ( j: $inner:expr ) => {{
+ $crate::apply_modifier!(NonZero, $inner)
+ }};
+ ( n: $inner:expr ) => {{
+ $crate::apply_modifier!(ZeroNotEqual, $inner)
+ }};
+
+ // Modifiers expanded to other operators
+ ( t: $inner:expr ) => {{
+ $inner.and_then(|(a_minisc, a_keymap, a_networks)| {
+ $crate::impl_leaf_opcode_value_two!(
+ AndV,
+ std::sync::Arc::new(a_minisc),
+ std::sync::Arc::new($crate::fragment!(true).unwrap().0)
+ )
+ .map(|(minisc, _, _)| (minisc, a_keymap, a_networks))
+ })
+ }};
+ ( l: $inner:expr ) => {{
+ $inner.and_then(|(a_minisc, a_keymap, a_networks)| {
+ $crate::impl_leaf_opcode_value_two!(
+ OrI,
+ std::sync::Arc::new($crate::fragment!(false).unwrap().0),
+ std::sync::Arc::new(a_minisc)
+ )
+ .map(|(minisc, _, _)| (minisc, a_keymap, a_networks))
+ })
+ }};
+ ( u: $inner:expr ) => {{
+ $inner.and_then(|(a_minisc, a_keymap, a_networks)| {
+ $crate::impl_leaf_opcode_value_two!(
+ OrI,
+ std::sync::Arc::new(a_minisc),
+ std::sync::Arc::new($crate::fragment!(false).unwrap().0)
+ )
+ .map(|(minisc, _, _)| (minisc, a_keymap, a_networks))
+ })
+ }};
+}
+
/// Macro to write full descriptors with code
///
/// This macro expands to a `Result` of
/// [`DescriptorTemplateOut`](super::template::DescriptorTemplateOut) and [`Error`](crate::Error)
///
+/// The syntax is very similar to the normal descriptor syntax, with the exception that modifiers
+/// cannot be grouped together. For instance, a descriptor fragment like `sdv:older(144)` has to be
+/// broken up to `s:d:v:older(144)`.
+///
/// ## Example
///
/// Signature plus timelock, equivalent to: `sh(wsh(and_v(v:pk(...), older(...))))`
/// # use std::str::FromStr;
/// let my_key = bitcoin::PublicKey::from_str("02e96fe52ef0e22d2f131dd425ce1893073a3c6ad20e8cac36726393dfb4856a4c")?;
/// let my_timelock = 50;
-/// let (my_descriptor, my_keys_map, networks) = bdk::descriptor!(sh ( wsh ( and_v (+v pk my_key), ( older my_timelock ))))?;
+/// let (my_descriptor, my_keys_map, networks) = bdk::descriptor!(sh(wsh(and_v(v:pk(my_key),older(my_timelock)))))?;
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
///
/// let (descriptor_a, key_map_a, networks) = bdk::descriptor! {
/// wsh (
-/// thresh 2, (pk my_key_1), (+s pk my_key_2), (+s+d+v older my_timelock)
+/// thresh(2, pk(my_key_1), s:pk(my_key_2), s:d:v:older(my_timelock))
/// )
/// }?;
///
/// let b_items = vec![
-/// bdk::fragment!(pk my_key_1)?,
-/// bdk::fragment!(+s pk my_key_2)?,
-/// bdk::fragment!(+s+d+v older my_timelock)?,
+/// bdk::fragment!(pk(my_key_1))?,
+/// bdk::fragment!(s:pk(my_key_2))?,
+/// bdk::fragment!(s:d:v:older(my_timelock))?,
/// ];
-/// let (descriptor_b, mut key_map_b, networks) = bdk::descriptor!( wsh ( thresh_vec 2, b_items ) )?;
+/// let (descriptor_b, mut key_map_b, networks) = bdk::descriptor!(wsh(thresh_vec(2,b_items)))?;
///
/// assert_eq!(descriptor_a, descriptor_b);
/// assert_eq!(key_map_a.len(), key_map_b.len());
///
/// let (descriptor, key_map, networks) = bdk::descriptor! {
/// wsh (
-/// multi 2, my_key_1, my_key_2
+/// multi(2, my_key_1, my_key_2)
/// )
/// }?;
/// # Ok::<(), Box<dyn std::error::Error>>(())
( shwsh ( $( $minisc:tt )* ) ) => ({
$crate::impl_top_level_sh!(ShWsh, ShWshSortedMulti, $( $minisc )*)
});
- ( pk $key:expr ) => ({
+ ( pk ( $key:expr ) ) => ({
$crate::impl_top_level_pk!(Pk, $crate::miniscript::Legacy, $key)
});
- ( pkh $key:expr ) => ({
+ ( pkh ( $key:expr ) ) => ({
$crate::impl_top_level_pk!(Pkh,$crate::miniscript::Legacy, $key)
});
- ( wpkh $key:expr ) => ({
+ ( wpkh ( $key:expr ) ) => ({
$crate::impl_top_level_pk!(Wpkh, $crate::miniscript::Segwitv0, $key)
});
( sh ( wpkh ( $key:expr ) ) ) => ({
});
}
-/// Macro to write descriptor fragments with code
-///
-/// This macro will be expanded to an object of type `Result<(Miniscript<DescriptorPublicKey, _>, KeyMap, ValidNetworks), Error>`. It allows writing
-/// fragments of larger descriptors that can be pieced together using `fragment!(thresh_vec ...)`.
+#[doc(hidden)]
+pub struct TupleTwo<A, B> {
+ pub a: A,
+ pub b: B,
+}
+
+impl<A, B> TupleTwo<A, B> {
+ pub fn flattened(self) -> (A, B) {
+ (self.a, self.b)
+ }
+}
+
+impl<A, B> From<(A, (B, ()))> for TupleTwo<A, B> {
+ fn from((a, (b, _)): (A, (B, ()))) -> Self {
+ TupleTwo { a, b }
+ }
+}
+
+#[doc(hidden)]
+pub struct TupleThree<A, B, C> {
+ pub a: A,
+ pub b: B,
+ pub c: C,
+}
+
+impl<A, B, C> TupleThree<A, B, C> {
+ pub fn flattened(self) -> (A, B, C) {
+ (self.a, self.b, self.c)
+ }
+}
+
+impl<A, B, C> From<(A, (B, (C, ())))> for TupleThree<A, B, C> {
+ fn from((a, (b, (c, _))): (A, (B, (C, ())))) -> Self {
+ TupleThree { a, b, c }
+ }
+}
+
+#[doc(hidden)]
#[macro_export]
-macro_rules! fragment {
- // Modifiers
- ( +a $( $inner:tt )* ) => ({
- $crate::impl_modifier!(Alt, $( $inner )*)
+macro_rules! fragment_internal {
+ // The @v prefix is used to parse a sequence of operands and return them in a vector. This is
+ // used by operands that take a variable number of arguments, like `thresh()` and `multi()`.
+ ( @v $op:ident ( $( $args:tt )* ) $( $tail:tt )* ) => ({
+ let mut v = vec![$crate::fragment!( $op ( $( $args )* ) )];
+ v.append(&mut $crate::fragment_internal!( @v $( $tail )* ));
+
+ v
});
- ( +s $( $inner:tt )* ) => ({
- $crate::impl_modifier!(Swap, $( $inner )*)
+ // Match modifiers
+ ( @v $modif:tt : $( $tail:tt )* ) => ({
+ let mut v = $crate::fragment_internal!( @v $( $tail )* );
+ let first = v.drain(..1).next().unwrap();
+
+ let first = $crate::apply_modifier!($modif:first);
+
+ let mut v_final = vec![first];
+ v_final.append(&mut v);
+
+ v_final
});
- ( +c $( $inner:tt )* ) => ({
- $crate::impl_modifier!(Check, $( $inner )*)
+ // Remove commas between operands
+ ( @v , $( $tail:tt )* ) => ({
+ $crate::fragment_internal!( @v $( $tail )* )
});
- ( +d $( $inner:tt )* ) => ({
- $crate::impl_modifier!(DupIf, $( $inner )*)
+ ( @v ) => ({
+ vec![]
});
- ( +v $( $inner:tt )* ) => ({
- $crate::impl_modifier!(Verify, $( $inner )*)
+
+ // The @t prefix is used to parse a sequence of operands and return them in a tuple. This
+ // allows checking at compile-time the number of arguments passed to an operand. For this
+ // reason it's used by `and_*()`, `or_*()`, etc.
+ //
+ // Unfortunately, due to the fact that concatenating tuples is pretty hard, the final result
+ // adds in the first spot the parsed operand and in the second spot the result of parsing
+ // all the following ones. For two operands the type then corresponds to: (X, (X, ())). For
+ // three operands it's (X, (X, (X, ()))), etc.
+ //
+ // To check that the right number of arguments has been passed we can "cast" those tuples to
+ // more convenient structures like `TupleTwo`. If the conversion succedes, the right number of
+ // args was passed. Otherwise the compilation fails entirely.
+ ( @t $op:ident ( $( $args:tt )* ) $( $tail:tt )* ) => ({
+ ($crate::fragment!( $op ( $( $args )* ) ), $crate::fragment_internal!( @t $( $tail )* ))
});
- ( +j $( $inner:tt )* ) => ({
- $crate::impl_modifier!(NonZero, $( $inner )*)
+ // Match modifiers
+ ( @t $modif:tt : $( $tail:tt )* ) => ({
+ let (first, tail) = $crate::fragment_internal!( @t $( $tail )* );
+ ($crate::apply_modifier!($modif:first), tail)
});
- ( +n $( $inner:tt )* ) => ({
- $crate::impl_modifier!(ZeroNotEqual, $( $inner )*)
+ // Remove commas between operands
+ ( @t , $( $tail:tt )* ) => ({
+ $crate::fragment_internal!( @t $( $tail )* )
});
- ( +t $( $inner:tt )* ) => ({
- $crate::fragment!(and_v ( $( $inner )* ), ( true ) )
+ ( @t ) => ({
+ ()
});
- ( +l $( $inner:tt )* ) => ({
- $crate::fragment!(or_i ( false ), ( $( $inner )* ) )
+
+ // Fallback to calling `fragment!()`
+ ( $( $tokens:tt )* ) => ({
+ $crate::fragment!($( $tokens )*)
});
- ( +u $( $inner:tt )* ) => ({
- $crate::fragment!(or_i ( $( $inner )* ), ( false ) )
+}
+
+/// Macro to write descriptor fragments with code
+///
+/// This macro will be expanded to an object of type `Result<(Miniscript<DescriptorPublicKey, _>, KeyMap, ValidNetworks), Error>`. It allows writing
+/// fragments of larger descriptors that can be pieced together using `fragment!(thresh_vec(m, ...))`.
+///
+/// The syntax to write macro fragment is the same as documented for the [`descriptor`] macro.
+#[macro_export]
+macro_rules! fragment {
+ // Modifiers
+ ( $modif:tt : $( $tail:tt )* ) => ({
+ let op = $crate::fragment!( $( $tail )* );
+ $crate::apply_modifier!($modif:op)
});
// Miniscript
( false ) => ({
$crate::impl_leaf_opcode!(False)
});
- ( pk_k $key:expr ) => ({
+ ( pk_k ( $key:expr ) ) => ({
let secp = $crate::bitcoin::secp256k1::Secp256k1::new();
$crate::keys::make_pk($key, &secp)
});
- ( pk $key:expr ) => ({
- $crate::fragment!(+c pk_k $key)
+ ( pk ( $key:expr ) ) => ({
+ $crate::fragment!(c:pk_k ( $key ))
});
- ( pk_h $key_hash:expr ) => ({
+ ( pk_h ( $key_hash:expr ) ) => ({
$crate::impl_leaf_opcode_value!(PkH, $key_hash)
});
- ( after $value:expr ) => ({
+ ( after ( $value:expr ) ) => ({
$crate::impl_leaf_opcode_value!(After, $value)
});
- ( older $value:expr ) => ({
+ ( older ( $value:expr ) ) => ({
$crate::impl_leaf_opcode_value!(Older, $value)
});
- ( sha256 $hash:expr ) => ({
+ ( sha256 ( $hash:expr ) ) => ({
$crate::impl_leaf_opcode_value!(Sha256, $hash)
});
- ( hash256 $hash:expr ) => ({
+ ( hash256 ( $hash:expr ) ) => ({
$crate::impl_leaf_opcode_value!(Hash256, $hash)
});
- ( ripemd160 $hash:expr ) => ({
+ ( ripemd160 ( $hash:expr ) ) => ({
$crate::impl_leaf_opcode_value!(Ripemd160, $hash)
});
- ( hash160 $hash:expr ) => ({
+ ( hash160 ( $hash:expr ) ) => ({
$crate::impl_leaf_opcode_value!(Hash160, $hash)
});
- ( and_v ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({
- $crate::impl_node_opcode_two!(AndV, ( $( $a )* ), ( $( $b )* ))
+ ( and_v ( $( $inner:tt )* ) ) => ({
+ $crate::impl_node_opcode_two!(AndV, $( $inner )*)
});
- ( and_b ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({
- $crate::impl_node_opcode_two!(AndB, ( $( $a )* ), ( $( $b )* ))
+ ( and_b ( $( $inner:tt )* ) ) => ({
+ $crate::impl_node_opcode_two!(AndB, $( $inner )*)
});
- ( and_or ( $( $a:tt )* ), ( $( $b:tt )* ), ( $( $c:tt )* ) ) => ({
- $crate::impl_node_opcode_three!(AndOr, ( $( $a )* ), ( $( $b )* ), ( $( $c )* ))
+ ( and_or ( $( $inner:tt )* ) ) => ({
+ $crate::impl_node_opcode_three!(AndOr, $( $inner )*)
});
- ( or_b ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({
- $crate::impl_node_opcode_two!(OrB, ( $( $a )* ), ( $( $b )* ))
+ ( or_b ( $( $inner:tt )* ) ) => ({
+ $crate::impl_node_opcode_two!(OrB, $( $inner )*)
});
- ( or_d ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({
- $crate::impl_node_opcode_two!(OrD, ( $( $a )* ), ( $( $b )* ))
+ ( or_d ( $( $inner:tt )* ) ) => ({
+ $crate::impl_node_opcode_two!(OrD, $( $inner )*)
});
- ( or_c ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({
- $crate::impl_node_opcode_two!(OrC, ( $( $a )* ), ( $( $b )* ))
+ ( or_c ( $( $inner:tt )* ) ) => ({
+ $crate::impl_node_opcode_two!(OrC, $( $inner )*)
});
- ( or_i ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({
- $crate::impl_node_opcode_two!(OrI, ( $( $a )* ), ( $( $b )* ))
+ ( or_i ( $( $inner:tt )* ) ) => ({
+ $crate::impl_node_opcode_two!(OrI, $( $inner )*)
});
- ( thresh_vec $thresh:expr, $items:expr ) => ({
+ ( thresh_vec ( $thresh:expr, $items:expr ) ) => ({
use $crate::miniscript::descriptor::KeyMap;
let (items, key_maps_networks): (Vec<_>, Vec<_>) = $items.into_iter().map(|(a, b, c)| (a, (b, c))).unzip();
$crate::impl_leaf_opcode_value_two!(Thresh, $thresh, items)
.map(|(minisc, _, _)| (minisc, key_maps, valid_networks))
});
- ( thresh $thresh:expr $(, ( $( $item:tt )* ) )+ ) => ({
- let mut items = vec![];
- $(
- items.push($crate::fragment!($( $item )*));
- )*
+ ( thresh ( $thresh:expr, $( $inner:tt )* ) ) => ({
+ let items = $crate::fragment_internal!( @v $( $inner )* );
items.into_iter().collect::<Result<Vec<_>, _>>()
- .and_then(|items| $crate::fragment!(thresh_vec $thresh, items))
+ .and_then(|items| $crate::fragment!(thresh_vec($thresh, items)))
});
- ( multi_vec $thresh:expr, $keys:expr ) => ({
+ ( multi_vec ( $thresh:expr, $keys:expr ) ) => ({
$crate::keys::make_multi($thresh, $keys)
});
- ( multi $thresh:expr $(, $key:expr )+ ) => ({
+ ( multi ( $thresh:expr $(, $key:expr )+ ) ) => ({
use $crate::keys::ToDescriptorKey;
let secp = $crate::bitcoin::secp256k1::Secp256k1::new();
});
// `sortedmulti()` is handled separately
- ( sortedmulti $( $inner:tt )* ) => ({
+ ( sortedmulti ( $( $inner:tt )* ) ) => ({
compile_error!("`sortedmulti` can only be used as the root operand of a descriptor");
});
- ( sortedmulti_vec $( $inner:tt )* ) => ({
+ ( sortedmulti_vec ( $( $inner:tt )* ) ) => ({
compile_error!("`sortedmulti_vec` can only be used as the root operand of a descriptor");
});
}
use bitcoin::network::constants::Network::{Bitcoin, Regtest, Testnet};
use bitcoin::util::bip32;
use bitcoin::util::bip32::ChildNumber;
+ use bitcoin::PrivateKey;
// test the descriptor!() macro
.unwrap();
check(
- descriptor!(bare(multi 1,pubkey1,pubkey2)),
+ descriptor!(bare(multi(1,pubkey1,pubkey2))),
false,
true,
&["512103a34b99f22c790c4e36b2b3c2c35a36db06226e41c692fc82b8b56ac1c540c5bd21032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af52ae"],
&["muZpTpBYhxmRFuCjLc7C6BBDF32C8XVJUi"],
);
check(
- descriptor!(sh(multi 1,pubkey1,pubkey2)),
+ descriptor!(sh(multi(1, pubkey1, pubkey2))),
false,
true,
&["2MymURoV1bzuMnWMGiXzyomDkeuxXY7Suey"],
&["2N5LiC3CqzxDamRTPG1kiNv1FpNJQ7x28sb"],
);
check(
- descriptor!(wsh(multi 1,pubkey1,pubkey2)),
+ descriptor!(wsh(multi(1, pubkey1, pubkey2))),
true,
true,
&["bcrt1qgw8jvv2hsrvjfa6q66rk6har7d32lrqm5unnf5cl63q9phxfvgps5fyfqe"],
);
check(
- descriptor!(sh(wsh(multi 1,pubkey1,pubkey2))),
+ descriptor!(sh(wsh(multi(1, pubkey1, pubkey2)))),
true,
true,
&["2NCidRJysy7apkmE6JF5mLLaJFkrN3Ub9iy"],
let desc_key2 = (xprv, path2).to_descriptor_key().unwrap();
check(
- descriptor!(sh(multi 1,desc_key1,desc_key2)),
+ descriptor!(sh(multi(1, desc_key1, desc_key2))),
false,
false,
&[
let desc_key1 = (xprv, path.clone()).to_descriptor_key().unwrap();
let desc_key2 = (xprv, path2.clone()).to_descriptor_key().unwrap();
check(
- descriptor!(wsh(multi 1,desc_key1,desc_key2)),
+ descriptor!(wsh(multi(1, desc_key1, desc_key2))),
true,
false,
&[
let desc_key1 = (xprv, path).to_descriptor_key().unwrap();
let desc_key2 = (xprv, path2).to_descriptor_key().unwrap();
check(
- descriptor!(sh(wsh(multi 1,desc_key1,desc_key2))),
+ descriptor!(sh(wsh(multi(1, desc_key1, desc_key2)))),
true,
false,
&[
let desc_key2 = (key_2, path_2);
check(
- descriptor!(sh(sortedmulti 1, desc_key1.clone(), desc_key2.clone())),
+ descriptor!(sh(sortedmulti(1, desc_key1.clone(), desc_key2.clone()))),
false,
false,
&[
);
check(
- descriptor!(sh(wsh(sortedmulti 1, desc_key1.clone(), desc_key2.clone()))),
+ descriptor!(sh(wsh(sortedmulti(
+ 1,
+ desc_key1.clone(),
+ desc_key2.clone()
+ )))),
true,
false,
&[
);
check(
- descriptor!(wsh(sortedmulti_vec 1, vec![desc_key1, desc_key2])),
+ descriptor!(wsh(sortedmulti_vec(1, vec![desc_key1, desc_key2]))),
true,
false,
&[
let desc_key3 = (xprv3, path3.clone()).to_descriptor_key().unwrap();
let (_desc, key_map, _valid_networks) =
- descriptor!(sh(wsh(multi 2,desc_key1,desc_key2,desc_key3))).unwrap();
+ descriptor!(sh(wsh(multi(2, desc_key1, desc_key2, desc_key3)))).unwrap();
assert_eq!(key_map.len(), 3);
let desc_key1: DescriptorKey<Segwitv0> =
//let desc_key:DescriptorKey<Segwitv0> = (xprv, path.clone()).to_descriptor_key().unwrap();
//let (desc, _key_map, _valid_networks) = descriptor!(pkh(desc_key)).unwrap();
}
+
+ #[test]
+ fn test_dsl_modifiers() {
+ let private_key =
+ PrivateKey::from_wif("cSQPHDBwXGjVzWRqAHm6zfvQhaTuj1f2bFH58h55ghbjtFwvmeXR").unwrap();
+ let (descriptor, _, _) =
+ descriptor!(wsh(thresh(2,d:v:older(1),s:pk(private_key),s:pk(private_key)))).unwrap();
+
+ assert_eq!(descriptor.to_string(), "wsh(thresh(2,dv:older(1),s:pk(02e96fe52ef0e22d2f131dd425ce1893073a3c6ad20e8cac36726393dfb4856a4c),s:pk(02e96fe52ef0e22d2f131dd425ce1893073a3c6ad20e8cac36726393dfb4856a4c)))")
+ }
}